Secondary aerosol formation from atmospheric reactions of aliphatic amines
نویسندگان
چکیده
Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant nonsalt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase. Correspondence to: J. H. Seinfeld ([email protected])
منابع مشابه
Interactive comment on “Secondary aerosol formation from atmospheric reactions of aliphatic amines” by S. M. Murphy et al
متن کامل
Secondary aerosol from atmospheric aliphatic amines
Secondary aerosol formation from atmospheric reactions of aliphatic amines S. M. Murphy, A. Sorooshian, J. H. Kroll, N. L. Ng, P. Chhabra, C. Tong, J. D. Surratt, E. Knipping, R. C. Flagan, and J. H. Seinfeld Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA Current Address: Aerodyne Research Inc., Billerica, MA, USA Electric Power Resea...
متن کاملCloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol
Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA...
متن کاملParticle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.
Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone...
متن کاملSecondary organic aerosol formation from primary aliphatic amines with NO3 radical
Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CECERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aero...
متن کامل